Using DELMIA Robotics Simulation to help your manufacturing operations be better, faster and cheaper

DELMIA Robotics Simulation can be used to virtually validate robot behaviour on the shop floor.

As engineers we are always looking for ways to improve how things are done. When it comes to manufacturing cells, that could be the process of creating our commercial product or the process of creating the manufacturing cell that produces the product. In either case, DELMIA Robotics Simulation plays a central role.

Learn how DELMIA robotics simulation helps us design and implement our robot factory concepts efficiently. Watch the video below to learn DELMIA Robotics on the 3DEXPERIENCE platform can be used to simulate and virtually validate robot behaviour on the shop floor:

https://youtu.be/0QPRmOpCo3A

DELMIA Robot Simulation practical example for Spot Welding

We’ll start our discussion assuming someone has a process plan for fabricating an assembly. They understand how many spot welds are required and they have basic tooling concept planned. Based on the amount of welding and the desired production time, the number of robots required, and their basic responsibilities have been defined.

Step 1: Spot Weld Gun Selection

Using DELMIA Robotics Simulation, we are able to try several weld guns from our library to determine which guns can access the welds required at each station. The shape of the gun shanks and their orientation allow us to standardize on one or a few guns that will be required for out process.

DELMIA Robot Spot Simulation

DELMIA Robot Spot Simulation

BENEFIT: By limiting the number of guns used in a process, we require fewer spare parts, and we can move forward with the purchase of these guns while the remainder of robot programming is completed. This saves spare part cost and allows the overall project timeline to be shorter.

Step 2: Robot Reach and Placement

In conjunction with the gun selection, we also use simulations to place the robots in the best possible place to reach all of their tasks and reduce the footprint of the cell. Engineers have several variables that can be manipulated to help with robot positioning. These include the X/Y location of the robot, the rotation of the robot, the addition of a robot riser to change the Z position, and the modification of the end effector to change the angle that the robot interfaces with tooling.

Modifications are often necessary when a process changes after the original design or as a way to reduce the size of a cell by bringing equipment closer together. The axis limits of a robot will sometimes require changes like this stay within their joint limits for specific tasks.

BENEFIT: Robot placement and configuration can often allow the reduction in the footprint size of a cell saving floor space and money.

Step 3: Path Development & Tooling Validation

The next step in the process is to develop a collision free path for the robot to complete its tasks. As part of this path creation, the engineer will work with tooling designers to modify tooling where collisions occur or where changes can allow the robot to operate faster.

BENEFIT: By validating the tooling virtually, the fabrication can begin sooner and the number of engineering changes required to the tooling are greatly reduced saving time and money on the project.

DELMIA Robot Welding

DELMIA Robot Welding

Step 4: Line Balancing and Cycle Time Analysis

Once we know we have collision free access to the robot tasks, the engineer can begin evaluating the cycle time for each robot and balancing the workload. The software is constructed to allow moving tasks between robots to even out the amount of time required by each robot and to compare it to the target cycle time for the cell. Cells are often designed with pickup or respot stations that do not have any planned tasks but instead serve to handle overflow from other robots to achieve cycle time. This gives the engineer the freedom to move tasks and achieve the design goals of the cell.

BENEFIT: A balanced workload allows for the minimum number of robots to be purchased while allowing the system to reach target production. This provides confidence to the team that last minute changes will not be required and optimizes the cost of the system.

DELMIA Robotics Logic

DELMIA Robotics Logic

Step 5: Offline Programming and Documentation

The last step in the project is to create the actual programs to run the robots on the floor and provide documentation to mount equipment and place it in the factory. The engineer can also be more aggressive with their use of the robot since they are programming a virtual robot not trying to hand teach the real one on the floor. This leads to faster cycle times without the risk of crashing during the programming.

BENEFIT: Faster programs created offline that reduces launch time and cuts commissioning time and costs dramatically from traditional teach pendant approaches.

DELMIA Robotics Simulation Summary

DELMIA Robotics programming in a virtual work environment provides better programs that avoid collision, run faster than their hand taught alternatives. Doing the programming in parallel with design finds mistakes sooner and allows the overall project timeline to be compressed significantly.

Related Software

DELMIA

DELMIA is a Global Industrial Operations software that specializes in digital manufacturing and manufacturing simulation.

Related Content

DELMIA Robot Programming

DELMIA Robot Programming & Modeling in Production

DELMIA robot programming and process modeling allows manufacturers to simulate the production process in a virtual environment before any physical action takes place.

Read More...
The Rising Value of Robotics in Manufacturing

WHITEPAPER: The Rising Value of Robotics in Manufacturing

Discover how focusing on five critical supply chain metrics - Delivery in Full and On Time, Forecast Accuracy, Supplier Performance, Inventory Accuracy, and Throughput -...

Read More...
Advance the Accurate Deployment of Manufacturing Robotics with Virtual Simulation

WHITEPAPER: Advance the Accurate Deployment of Manufacturing Robotics with Virtual Simulation

Discover how focusing on five critical supply chain metrics - Delivery in Full and On Time, Forecast Accuracy, Supplier Performance, Inventory Accuracy, and Throughput -...

Read More...